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3.1 OVERVIEW

This chapter reviews the fundamental governing equations for atmosphere and ocean dynam-
ics. This material lays the groundwork for our later examination of coupled atmosphere–ocean
variability. The equations of motion are derived first for a Cartesian coordinate system, and
then for a rotating spherical coordinate system. The scales of the terms of the momentum
equations are analyzed, and a number of simplifications are developed for later use (including
the f -plane and β-plane coordinate systems, the hydrostatic approximation for the atmo-
sphere and the Boussinesq approximation for the ocean, and geostrophic balance and the
thermal wind).

3.2 THE EQUATIONS OF MOTION

The atmosphere and ocean are both fluids, and are therefore subject to fluid dynamics. The
laws of fluid dynamics are identical to those of classical solid mechanics (i.e., Newton’s laws
and the laws of thermodynamics), but their application differs in some fundamental ways.

In classical physics, the dynamic interactions among solid objects are often described
according to the position and momentum of the objects themselves. One well-known example
is the gravitational interaction between two planets, which can be formulated according to
Newton’s laws of motion as

dr1

d t
= v1

dv1

d t
= Gm2

(r1 − r2)2 r̂

dr2

d t
= v2

dv2

d t
=− Gm1

(r2 − r1)2 r̂
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Figure 3.1: Schematic illustration of the differences between the (a) Lagrangian and (b) Eule-
rian perspectives on fluid dynamics. In the Lagrangian perspective, we track the
properties of infinitesimal parcels of the fluid as they are transported by the flow.
In the Eulerian perspective, we follow the evolution of the properties of the fluid
within a volume fixed in space.

where ri and vi represent the three-dimensional position and velocity vectors of planet i , mi is
its mass, G is the gravitational constant, and r̂ is a unit vector directed from planet 1 to planet
2.

Unlike planets, which are discrete and easily identifiable, fluids are continuous. Using the
same approach to describe fluid dynamics would require us to keep track of the interactions
among a very large number of infinitesimal fluid parcels (Fig. 3.1a). This perspective on
fluid motion is often called the Lagrangian perspective (after the mathematician Joseph–
Louis Lagrange). The Lagrangian approach, while fundamentally correct and useful in some
instances, would be very complicated to implement for the entire atmosphere–ocean system.
An alternative approach is to examine the evolution of the fluid at fixed points in space from
a particular frame of reference (Fig. 3.1b). This perspective on fluid motion is often called
the Eulerian perspective (after the mathematician Leonard Euler). Climate models and other
descriptions of the Earth system generally use an Eulerian approach, and so we will consider
the equations of motion from this perspective.

In the planetary motion example considered above, the state of each planet can be described
at any given time according to its position r(t) and velocity v(t). For an Eulerian volume in
the atmosphere or ocean, the position r = (x, y, z) is fixed in time. The state of the fluid in this
volume can be described by the velocity v = (u, v, w), the pressure p, temperature T , density
ρ, and any additional components on which these variables depend (such as water vapor
q in the atmosphere or salinity S in the ocean). The independent variables are therefore
(x, y, z, t), while the dependent variables are ϕ = (u, v, w, p,ρ,T, q) in the atmosphere and
ϕ= (u, v, w, p,ρ,T,S) in the ocean. The time evolution of the fluid in the volume can therefore
be expressed in the general form as

∂

∂t
ϕ(x, y, z, t ) =F (ϕ, x, y, z, t )

where F is a system of equations determined from fundamental physical laws. Note that
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Figure 3.2: Schematic illustration of advection of a fluid property φ through the Eulerian
volume by the three-dimensional fluid velocity field.

the system F must contain at least seven equations to solve for seven unknown variables. In
practice, the properties of the atmosphere and ocean often allow approximations for one or
more of the dependent variables that reduce the order and/or complexity of this system of
equations.

3.2.1 THE MOMENTUM EQUATIONS

Newton’s second law of motion states that force is equal to mass times acceleration:

F = ma (3.1)

where acceleration is the time derivative of velocity (a = dv
d t ) and velocity is the time derivative

of the three-dimensional position vector (v = dr
d t ). We can rewrite equation 3.1 as

dv

d t
= 1

m
F = F′ (3.2)

where F′ is the force per unit mass. Recall that Newton’s second law is expressed in the
Lagrangian framework, so that the velocity v varies with both position and time:

d

d t
v(x, y, z, t ) = ∂v

∂t
+ ∂v

∂x

d x

d t
+ ∂v

∂y

d y

d t
+ ∂v

∂z

d z

d t

= ∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z

= ∂v

∂t
+v ·∇v (3.3)

The first term on the right hand side of equation 3.3 (∂v
∂t ) represents the change of velocity with

time in the Eulerian volume located at position (x, y, z). The second term (v ·∇v) represents
the advection of velocity (momentum per unit mass) into the Eulerian volume by the existing
velocity field (as shown schematically in Fig. 3.2). Note that v ·∇ is an operator acting, in this
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Figure 3.3: Schematic diagram of the pressure gradient force in the x-direction on a cubic
Eulerian volume of dimensions δx ×δy ×δz. (from oceanworld.tamu.edu).

case, on the velocity field v. This operator also acts on any fluid property ϕ (e.g., temperature,

density, pressure, humidity, or salinity), and relates the Lagrangian time derivative ( dϕ
d t ) fol-

lowing the fluid motion to the Eulerian derivative (∂ϕ∂t ) for a fixed volume in space. For the
remainder of this text we will write this term as (v ·∇)ϕ to specify that v ·∇ is an operator acting
on the fluid property ϕ.

From equations 3.2 and 3.3, we have the momentum balance for an Eulerian volume:

∂v

∂t
+ (v ·∇)v = F′ (3.4)

with F′ the total force per unit mass within the volume. In other words, the velocity of the
fluid passing through an Eulerian volume can change due to either momentum advection
or outside forces acting on the fluid. The next step is to determine the forces acting on the
fluid within the volume. Some of these we have already encountered, such as the gravitational

force g and the vertical pressure gradient force − 1
ρ
∂p
∂z (see equation 1.15). Adding these, the

momentum balance becomes

∂v

∂t
+ (v ·∇)v =− 1

ρ

∂p

∂z
+g+F′. (3.5)

Pressure in the atmosphere and ocean may vary in the horizontal dimension as well, so that
the pressure gradient force is not limited to the vertical coordinate alone. The horizontal
pressure gradient force per unit volume can be calculated in the same way as the vertical
pressure gradient force (equation 1.14), as the horizontal difference in pressure across a cubic
volume:

([
p −

(
∂p

∂x

)
δx

]
δAy z −pδAy z

)
+

([
p −

(
∂p

∂y

)
δy

]
δAxz −pδAxz

)
=−

(
∂p

∂x
+ ∂p

∂y

)
δV (3.6)

where δV is the volume and the subscripts y z and xz indicate the surface areas in the y–z and
x–z planes, respectively (Fig. 3.3). Combining equation 3.6 with equation 1.14 and dividing by
ρδV , we have an expression for the total pressure gradient force per unit mass:
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− 1

ρ

(
∂p

∂x
+ ∂p

∂y
+ ∂p

∂z

)
=−∇p

ρ
. (3.7)

This expression can also be derived for a fluid volume of arbitrary shape (see, e.g., Vallis, 2006),
and is not dependent on the assumption of a cubic volume used here. Replacing the vertical
pressure gradient force in equation 3.5 with the full three-dimensional pressure gradient force
(equation 3.7), we have:

∂v

∂t
+ (v ·∇)v =−∇p

ρ
+g+F′ (3.8)

where F′ represents additional forces. For the atmosphere and ocean, F′ is dominated by
the frictional force F3, where the subscript 3 indicates that F3 = (Fx ,Fy ,Fz ) varies in all three
dimensions. Note that in practice the friction term also includes momentum dissipation or
generation associated with motion at spatial scales that are too small to resolve. For example,
many current climate models define the atmosphere or ocean on an Eulerian grid with a
grid spacing of 1◦×1◦ (∼100 km×100 km) or more. This grid is too large to resolve many
dynamical processes that affect the evolution of the fluid, such as convection (which can
occur on horizontal scales less than 10 km). Models often represent the influence of these
small-scale motions on the large-scale dynamics via the friction term.

Inclusion of the friction term leads to the vector form of the momentum equation:

∂v

∂t
+ (v ·∇)v =−∇p

ρ
+g+F3. (3.9)

The first term on the left hand side is the time derivative of velocity (momentum per unit
mass) in the Eulerian framework, while the second term is the advection of momentum by
the velocity field. The first term on the right hand side is the pressure gradient force (which
pushes the fluid from higher pressure to lower pressure both vertically and horizontally), the
second term is the gravitational force (which is directed downward in this framework), and
the third term is a frictional term as described above. Equation 3.9 is expressed in component
form as a system of three equations:

∂u

∂t
+ (v ·∇)u =− 1

ρ

∂p

∂x
+Fx (3.10)

∂v

∂t
+ (v ·∇)v =− 1

ρ

∂p

∂y
+Fy (3.11)

∂w

∂t
+ (v ·∇)w =− 1

ρ

∂p

∂z
− g +Fz (3.12)

where we have assumed that gravity acts only in the vertical (z) direction.

3.2.2 THE CONTINUITY EQUATION

The continuity equation expresses the conservation of mass within the fluid. Consider again
an infinitesimal cubic volume of dimensions δx, δy , and δz. The change in the mass of the
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Figure 3.4: Schematic diagram of the fluxes of density in the x-direction into and out of a cubic
Eulerian volume of dimensions δx ×δy ×δz. (from oceanworld.tamu.edu).

fluid within the volume must be equal to the flux of mass into the volume minus the flux of
mass out of the volume (Fig. 3.4). In the x direction, the flow into the volume is expressed by

δyδz

[
(ρu)(x, y, z)−

(
(ρu)(x, y, z)+ ∂(ρu)

∂x
δx

)]
=−∂(ρu)

∂x
δxδyδz

Adding in the y and z directions, the total flow into the volume must be balanced by the
change in mass within the volume:

∂ρ

∂t
δxδyδz =−

[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
δxδyδz.

Cleaning up and combining terms, we obtain the mass continuity equation:

∂ρ

∂t
+

[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
= ∂ρ

∂t
+∇· (ρv) = 0. (3.13)

As with the pressure gradient force (equation 3.7), equation 3.13 may be derived for a volume
of arbitrary shape (see, e.g., Vallis, 2006), and is not dependent on the assumption of a cubic
volume.

Note that

∂ρ

∂t
+∇· (ρv) = ∂ρ

∂t
+ (v ·∇)ρ+ρ∇·v.

This vector identity again allows us to convert between the Lagrangian and Eulerian forms of

the mass continuity equation (recall that the Lagrangian time derivative dρ
d t = ∂ρ

∂t + (v ·∇)ρ).

3.2.3 THE EQUATION OF STATE AND CONSTITUENT EQUATIONS

The equation of state expresses the relationship among the various thermodynamic variables
(temperature, density, and pressure), and takes the general form f (p,ρ,T,c) = 0 (where c
represents thermodynamically influential constituents, such as water vapor in the atmosphere
or salinity in the ocean).

We have already encountered the equation of state for the dry atmosphere in chapter 1
(equation 1.13):
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Figure 3.5: Density of seawater near the ocean surface as a function of temperature and salin-
ity according a semi-empirical formula (solid black contours) and a linearized
equation of the form given by equations 3.15 and 3.16.

p = ρRd T

This equation may be modified to account for the effects of water vapor phase changes by
replacing the temperature T with the virtual temperature Tv :

Tv = T

1− (e/p)(1−ε)
= (1+0.608q)T (3.14)

where e is the vapor pressure (defined as in equation 2.20), ε is the ratio of the molecular
weight of water vapor to the mean molecular weight of dry air (Mv /Md = 0.622), and q is the
specific humidity (defined as in equation 2.27).

The equation of state for the ocean is more complicated. In its general form, it can be
written as

ρ = ρ0 f (T,S, p) (3.15)

where the linearized form of f (T,S, p) is

f (T,S, p) = [1−α(T −T0)+β(S −S0)+γ(p −p0)]. (3.16)

The coefficients α, β, and γ vary with temperature, salinity, and pressure, although near the
surface they may be approximated as constant with α = 2×10−4 K−1, β = 7.6×10−4 ppt−1,
and γ = 0. The linearized version of equation 3.15 is not accurate enough for quantitative
oceanography (see Fig. 3.5), and should in most instances be replaced by semi-empirical
formulae (see, e.g., the seawater python module).

The momentum equations 3.10, 3.11, and 3.12 and the continuity equation 3.13 provide
four equations but contain five unknowns (u, v , w , ρ, and p). The equations of state for
the atmosphere and ocean provide a fifth equation, but also introduce a sixth and seventh
unknown (T and q or S). If the equation of state were such that it did not introduce any new
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variables, these five equations would be sufficient to describe the evolution of the system.
The simplest such case would be that of a constant density fluid, for which the equation of
state is simply ρ = ρ0. A fluid for which the density is dependent only on pressure is called a
barotropic fluid. In such a fluid, surfaces of constant pressure (isobars) coincide with surfaces
of constant density (isopycnals) and surfaces of constant temperature (isotherms), and the
flow is tightly constrained. Certain regions of the atmosphere and ocean are approximately
barotropic. All other fluids (for which density is dependent on more than just pressure) are
called baroclinic.

The concentration of a fluid constituent c (such as water vapor in the atmosphere or salinity
in the ocean) can generally be modeled as

∂c

∂t
+ (v ·∇)c = 1

ρ
(∆csrc −∆csnk +∆cdiff) (3.17)

where ∆csrc represents all sources of c in the fluid, ∆csnk represents all sinks, and ∆cdiff repre-
sents diffusive mixing. For instance, ∆qsrc for water vapor would include evaporation from
the ocean surface, while ∆qsnk would include condensation to liquid water or ice. For salinity,
the sources include evaporation and sea ice formation, while sinks include precipitation and
melting of sea ice (note that although these processes do not actually add or remove salt from
the ocean, they do change the concentration of salt in the surface layer). An expression like
equation 3.17 is a necessary component of the fluid dynamical equations if the constituent c
appears in one or more of the other equations. Note that the simplest form of equation 3.17
again results from the assumption that c is constant (c = c0), which is the case for well-mixed
constituents.

3.2.4 THE THERMODYNAMIC EQUATION

The thermodynamic equation is based on the first law of thermodynamics (section 2.2), and is
generally expressed as a function of potential temperature (equation 2.5):

∂θ

∂t
+ (v ·∇)θ = θ

cp T
Q̇ (3.18)

where Q̇ is the diabatic heating rate per unit mass, which includes heating due to radiation,
latent heating, conduction, and diffusion. Note that the diabatic heating rate Q̇ includes radia-
tive heating, which in the atmosphere is dependent on the concentrations of carbon dioxide,
ozone, and other gases that absorb either solar or infrared radiation (Fig. 1.10). Inclusion of
these concentrations adds further dependent variables, and therefore requires the addition of
additional constituent equations in the form of equation 3.17.

3.2.5 BOUNDARY CONDITIONS

Together with the equation of state, equations 3.10, 3.11, 3.12, 3.13, 3.17, and 3.18 represent
seven equations for seven unknowns. The solution of these equations requires boundary
conditions. For example, at the lower boundary of the atmosphere (z = z0), the vertical wind
may be assumed to be
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w = u ·∇z0 = u
∂z0

∂x
+ v

∂z0

∂y
(3.19)

plus some frictional term, where u = (u, v) is the two-dimensional horizontal velocity vector.
This ensures that the surface winds follow the topography (e.g., along mountain slopes), and
eliminates any flow of air into or out of the surface. Similar conditions may be imposed at
the bottom of the ocean to prevent any flow of water into or out of the ocean floor, as well
as at the top of the atmosphere and at the side boundaries of the ocean. At the top of the
ocean, pressure is constrained to be equal to the pressure at the bottom of the atmosphere.
The vertical velocity at the top of the ocean may be set equal to zero, in which case the top of
the ocean acts like a lid. Alternatively, the vertical velocity may be set equal to some condition
based on surface pressure, allowing waves, tides, and other variations in sea surface height.
Finally, the frictional stresses at the top of the ocean and bottom of the atmosphere must be
equal, so that momentum is neither generated nor removed, but is instead conserved and
transferred between the two fluids.

3.3 THE EFFECTS OF ROTATION

Section 3.2 provides the fundamental fluid dynamical equations for a fluid in a cartesian
coordinate system (e.g., an ocean in a box). In reality, the ocean and atmosphere are located
on the surface of Earth, which is approximately spherical. Moreover, the equations discussed
in section 3.2 are appropriate only in an inertial frame of reference (i.e., a frame of reference
that is fixed relative to the sun and other distant stars). We want to take the position (x, y, z) as
fixed with respect to the Earth’s surface, which is rotating rapidly relative to the position of
the sun and other stars. We must therefore modify the fundamental equations to account for
Earth’s spherical geometry and rapid rotation.

Figure 3.6 shows a schematic diagram of the spherical coordinate system. This coordinate
system is defined relative to the origin located at the center of the Earth, with the position x
replaced by the angle λ (longitude), y replaced by the angle ϑ (latitude), and z replaced by the
radial vector r . The (x, y, z) geometric coordinates are nonetheless often used in the spherical
coordinate system by applying the approximate relations

x = r cosϑλ u = d x

d t
= r cosϑ

dλ

d t

y = rϑ v = d y

d t
= r

dϑ

d t

z = r −a w = d z

d t

where a is the average radius of the Earth (a = 6.37× 106 m). The atmosphere and ocean
can be considered as shallow fluids, for which the radius of the Earth is much greater than
the depth of the fluid (a À z). We therefore often replace the spherical coordinate r with
the constant a except in the differentiating argument, where r is instead replaced by z (e.g.,

r cosϑdλ
d t becomes a cosϑdλ

d t , whereas ∂p
∂r becomes ∂p

∂z ).
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Figure 3.6: Schematic diagram of the spherical coordinate system. The orthogonal unit vectors
i, j, and k point in the direction of increasing longitude λ, latitude ϑ, and altitude
z. One may apply a quasi-Cartesian coordinate system (x, y, z) as described in the
text (from Vallis, 2006).
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The momentum equations in spherical coordinates are then given by

∂u

∂t
+ (v ·∇)u −

(
u tanϑ

a

)
v + w

a
u =− 1

ρ

∂p

∂x
+Fx (3.20)

∂v

∂t
+ (v ·∇)v +

(
u tanϑ

a

)
u + w

a
v =− 1

ρ

∂p

∂y
+Fy (3.21)

∂w

∂t
+ (v ·∇)w − u2 + v2

a
=− 1

ρ

∂p

∂z
− g +Fz (3.22)

where the new terms (those involving 1/a) result from consideration of the curvature of Earth.
The continuity equation becomes:

∂ρ

∂t
+

[
∂(ρu)

∂x
+ 1

cosϑ

∂(ρv cosϑ)

∂y
+ ∂(ρw)

∂z

]
= 0. (3.23)

Note that equation 3.23 is equivalent to

∂ρ

∂t
+∇· (ρv) = 0

when ∇· (ρv) is the divergence of the vector ρv applied in the true spherical coordinate system
(λ,ϑ,r ).

The thermodynamic, and constituent equations are effectively unchanged (with the caveat
that the definitions of x, y , z, u, v , and w have all been modified to conform to the spher-
ical coordinate system using the relationships listed above). The equation of state has no
dependence on the coordinate system.

The rotation of the Earth introduces two apparent forces into the momentum equations,
namely the centrifugal force and the Coriolis force. Strictly speaking, neither of these forces
are ‘real’ in the sense of equation 3.1, as we will learn below. For most applications in the
atmosphere and ocean the Coriolis force is the more important of the two, but both affect the
formulation of the momentum equations in a coordinate system with (x, y, z) fixed relative to
the surface of the Earth.

The centrifugal force can be understood in the context of a train that starts to go around a
curve in the tracks. A rider on this train feels as though she is being pushed outward toward
the side of the car. The outward push that the rider feels is commonly known as the centrifugal
force. Newton’s first law states that an object will remain at rest or continue moving in a
straight line at constant speed unless acted upon by an outside force. Therefore, a force must
act upon the rider (and the train) to ensure that she follows the curve (rather than continuing
to travel in a straight line). This force is called the centripetal force, which is a real force applied
by the rider’s seat (or the side wall of the train). The centrifugal force that the rider feels is
caused by her tendency to continue going in a straight line while her environment (the train)
begins to curve. From the point of view of someone standing beside the tracks, a real force
(the centripetal force) is applied to the train. This force causes the train to change directions.
From the point of view of the rider, she experiences two forces that cancel each other out: the
centrifugal force pushing outward and the centripetal force pushing in. She therefore remains
(approximately) stationary within her environment.
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Figure 3.7: (modified from Vallis, 2006).

The centrifugal force per unit mass on an object moving in a circle of radius r at an angular
velocityΩ is

Fcen =Ω2r (3.24)

where r is a vector of length r from the center of the circle to the position of the object. In a
spherical geometry with the axis of rotation through the sphere, this expression becomes

Fcen =Ω2r⊥ (3.25)

where r⊥ is a vector of length a cosϑ (with a the radius of the sphere and ϑ the latitude of
the object) in the direction perpendicular to the axis of rotation (as shown in Fig. 3.7a). For
Earth,Ω= 7.292×10−5 rad s−1 and a = 6.37×106 m, so that Fcen = 0.034 m s−2. The centrifugal
force is clearly much smaller than the gravitational force. We can therefore define an effective
gravity, which is the sum of the gravitational and centrifugal forces:

g ≡ geff = ggrv +Ω2r⊥. (3.26)

Note, however, that the centrifugal force (Ω2r⊥) is directed perpendicular to the axis of rotation
while the true gravitational force (ggrv) is directed toward the center of the Earth, so that the
effective gravity g is not perpendicular to the surface of a spherical Earth (Fig. 3.7a). In fact,
because the centrifugal effect is largest at the equator and zero at the poles, the radius from
the center of the Earth to a point at the equator is approximately 30 km larger than the radius
from the center of the Earth to either pole. We can ensure that gravity acts perpendicular to
the surface by defining the surface of the Earth according to the geopotentialΦ= g z, such that

g =−∇Φ. (3.27)

With this adjustment, the effective gravity is oriented perpendicular to theΦ= 0 geopotential
surface, which is typically defined as sea level (Fig. 3.7b).

The Coriolis force can be understood in terms of an object launched from the North Pole
toward the equator. After the object is launched, it is unaffected by the rotation of the Earth
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Figure 3.8: Schematic diagram of the flight of a missile launched from the North Pole toward
the equator, which illustrates the effect of the Coriolis force. The missile is initially
aimed at Africa, but lands in South America instead because Earth rotates beneath
it. (from Vallis, 2011).

underneath it. By the time it reaches the equator, it will land far to the west of where it was
aimed (Fig. 3.8). From an inertial point of view, the object has traveled in a straight line. From
the perspective of Earth, the object has been deflected toward the right. If the same object
were launched from the equator toward the pole, it would begin its flight with a large eastward
velocity and would therefore again appear to be deflected toward the right. The Coriolis force
is again not a real force in the Newtonian sense; it is caused by the tendency of an object to go
in a straight line while the Earth rotates beneath it. Suppose the object is instead launched
in the east–west direction (rather than the north–south direction as before). If the object is
launched in the same direction as the Earth’s rotation it will move faster than the Earth beneath
it, so that the centrifugal force is greater than if the object were stationary on the ground. The
object therefore moves away from the axis of rotation (toward the equator). If the object is
launched in the opposite direction, the centrifugal force on the object is less than if the object
were stationary on the ground and the object will move away from the axis of rotation (toward
the pole). No matter which direction the object is launched, it will appear to be deflected
toward the right in the northern hemisphere and toward the left in the southern hemisphere.

The Coriolis force per unit mass is

FCor =−2Ω×vR (3.28)

where vR is the velocity vector relative to the surface of the Earth. The main properties of the
Coriolis force can be deduced from equation 3.28: the Coriolis force only acts on bodies that
are moving relative to the surface of the Earth (i.e., |vR| 6= 0), and the Coriolis force acts at right
angles to the direction of motion. The three-dimensional components of the vectorsΩ and vR

are

Ω= (0,Ωcosϑ,Ωsinϑ)

vR = (u, v, w)
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so that the vector cross-product is

−2Ω×vR = (v2Ωsinϑ−u2Ωcosϑ,−u2Ωsinϑ,u2Ωcosϑ).

The full form of the momentum equations in a rotating spherical coordinate system is then

∂u

∂t
+ (v ·∇)u −

(
2Ωsinϑ+ u tanϑ

a

)
v + w

a
u +w ·2Ωcosϑ=− 1

ρ

∂p

∂x
+Fx (3.29)

∂v

∂t
+ (v ·∇)v +

(
2Ωsinϑ+ u tanϑ

a

)
u + w

a
v =− 1

ρ

∂p

∂y
+Fy (3.30)

∂w

∂t
+ (v ·∇)w − u2 + v2

a
−u ·2Ωcosϑ=− 1

ρ

∂p

∂z
− g +Fz (3.31)

where the terms involvingΩ are the Coriolis terms. The symbol f is often used to represent the
Coriolis term that appears in both horizontal momentum equations (2Ωsinϑ). The equation
of state and the continuity, thermodynamic, and constituent equations are not modified by
the effects of rotation.

3.4 SIMPLIFICATIONS AND APPROXIMATIONS

We can use our knowledge of the atmosphere and ocean to simplify the full form of the fluid
dynamical equations derived in sections 3.2 and 3.3 in a number of ways. For example, both
the atmosphere and ocean may be considered shallow fluids, in the sense that they are much
broader than they are deep. The atmosphere and ocean are also both stratified, in the sense
that lighter fluid is generally located above denser fluid (as shown in chapter 2). This implies
that both gravity and buoyancy are important. We may make additional approximations
when considering particular types of motion or particular regions of the atmosphere or ocean.
Examples of these approximations are described in the remainder of this section.

3.4.1 SCALE ANALYSIS OF THE MOMENTUM EQUATIONS

The complete set of fluid dynamical equations derived in sections 3.2 and 3.3 describe all types
and scales of motion in the atmosphere and ocean. By focusing on specific types and scales of
motion, we can identify which terms in these equations are most important and which terms
are relatively unimportant (i.e., small enough to ignore). By eliminating negligible terms from
the equations, we can both simplify the equations of motion and filter out other unwanted
types and scales of motion. This allows us to better describe the motion of interest.

For example, we can identify the characteristic scales for the horizontal velocity (U), vertical
velocity (W), length (L), height (H), and horizontal and vertical pressure fluctuations (δPx y /ρ
and δPz /ρ) for a variety of motions in the atmosphere and ocean. Table 3.1 lists these charac-
teristic scales for two types of motion: synoptic-scale disturbances (i.e., high- or low-pressure
systems that extend over ∼1000 km) in the mid-latitude atmosphere and the wind-driven
circulation in the mid-latitude ocean. For example, synoptic-scale extratropical cyclones or
anticyclones extend over regions of approximately 1000 km, and have horizontal velocities
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on the order of 10 m s−1. Note that characteristic scales are generally rounded to the nearest
power of 10. Table 3.1 also provides a characteristic scale for the Coriolis term f = 2Ωsinϑ,
which in the mid-latitudes is approximately equal to f0 = 2Ωsin(45◦) = 2Ωcos(45◦) ≈ 10−4 s−1.
The characteristic time scale for a fluid motion can be calculated as the ratio between the
length scale L and the horizontal velocity scale U (T = L/U).

Plugging these characteristic scales into the momentum equations (Tables 3.2 and 3.3)
allows us to identify which terms are most important and which terms are relatively unim-
portant. In both types of motion, the horizontal momentum equation is dominated by the

Coriolis term (u2Ωcosϑ in the x-equation) and the pressure gradient term (− 1
ρ
∂p
∂x ). Motion

for which these two forces are exactly in balance (i.e., the Coriolis force is equal and opposite
to the pressure gradient force) is called geostrophic motion, and will be discussed in more
detail in section 3.4.4. The vertical momentum equation is clearly dominated by the pres-
sure gradient term and the gravitational term in both cases. Setting the other terms equal to
zero retrieves the hydrostatic balance (equation 1.15), in which the pressure gradient force
exactly balances the gravitational force. Based on this analysis, motions associated with both
synoptic-scale disturbances in the mid-latitude atmosphere and the wind-driven circulation
in the mid-latitude ocean are approximately geostrophic and approximately hydrostatic.

Note that we have ignored the frictional term in this scale analysis. The frictional force
per unit mass is generally quite small for continuous large-scale motions in both the atmo-
sphere and ocean, so that this term can be comfortably ignored. However, as mentioned in
section 3.2.1, the frictional term is often used in models to represent the effects of small-scale
motions on the (discrete) large-scale flow. In this case, its form is not immediately obvious,
and scale analysis is not possible.

Different types of motion in the atmosphere and ocean have different characteristic scales,
so that this scale analysis for large-scale motion in the mid-latitudes cannot be generalized
for all situations. However, as mentioned above, the atmosphere and ocean may be consid-
ered shallow (H¿L), so that W¿U for large-scale motions in both fluids. Given also that f0

varies with latitude from 0 to approximately 1.5×10−4, terms involving w/a or w cosϑ can be
eliminated from the momentum equations for large-scale motion. When coupled with the
assumption of hydrostatic balance this gives the primitive equations:

Table 3.1: Characteristic scales for the variables in the horizontal momentum equations for
(A) a synoptic-scale disturbance in the mid-latitude atmosphere and (O) the wind-
driven circulation in the mid-latitude ocean.

U W L H δPx y/ρ δPz/ρ f 0 T=L/U
A 10 m s−1 10−2 m s−1 106 m 104 m 103 m2 s−2 105 m2 s−2 10−4 s−1 105 s
O 10−1 m s−1 10−5 m s−1 105 m 10 m 1 m2 s−2 102 m2 s−2 10−4 s−1 106 s
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Table 3.2: Scale analysis of the horizontal momentum equations using the characteristic scales
listed in Table 3.1.

x-Eq. ∂u
∂t +(v ·∇)u −v2Ωsinϑ −uv tanϑ

a +uw
a +w2Ωcosϑ = − 1

ρ∂p∂x

y-Eq. ∂v
∂t +(v ·∇)v +u2Ωsinϑ +u2 tanϑ

a + v w
a = − 1

ρ∂p∂y

Scales U/T U2/L f0U U2/a UW/a f0W δPx y/ρ/L)
A (m s−2) 10−4 10−4 10−3 10−5 10−8 10−6 10−3

O (m s−2) 10−7 10−7 10−5 10−9 10−12 10−8 10−5

Table 3.3: Scale analysis of the vertical momentum equation using the characteristic scales
listed in Table 3.1.

z-Eq. ∂w
∂t +(v ·∇)w −u2+v2

a −u2Ωcosϑ = − 1
ρ∂p∂x −g

Scales W/T UW/L U2/a f0U δPz/ρ/H g
A (m s−2) 10−7 10−7 10−5 10−3 10 10
O (m s−2) 10−9 10−9 10−9 10−5 10 10

∂u

∂t
+ (v ·∇)u −

(
2Ωsinϑ+ u tanϑ

a

)
v =− 1

ρ

∂p

∂x
+Fx (3.32)

∂v

∂t
+ (v ·∇)v +

(
2Ωsinϑ+ u tanϑ

a

)
u =− 1

ρ

∂p

∂y
+Fy (3.33)

0 =− 1

ρ

∂p

∂z
− g (3.34)

The primitive equations are often used in models to simulate large-scale motion in the atmo-
sphere and ocean. In the 1960s, when computers were much less powerful, these equations
were the most complex form of the fluid dynamical equations that could be solved numerically
by computers in a reasonable amount of time. The formulation of the primitive equations (i.e.,
the terms that are included) is fundamentally dependent on scale analysis.

3.4.2 THE f -PLANE AND THE β-PLANE

If we are interested in the fluid dynamics of a small region of the atmosphere and ocean,
we may treat that region as a plane for which the Coriolis term f = 2Ωsinϑ is constant (i.e.,
f = f0). In this approximation, we can also ignore the curvature terms (the fluid is defined on
a horizontal plane so that a →∞), so that the momentum equations become
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∂u

∂t
+ (v ·∇)u − f0v =− 1

ρ

∂p

∂x
+Fx (3.35)

∂v

∂t
+ (v ·∇)v + f0u =− 1

ρ

∂p

∂y
+Fy (3.36)

∂w

∂t
+ (v ·∇)w =− 1

ρ

∂p

∂z
− g +Fz (3.37)

and the continuity equation is identical in form to equation 3.13 (i.e., the term 1
cosϑ

∂y
∂ϑ drops

out of equation 3.23).
The simpler geometry of the plane may be retained while taking the latitudinal variations of

f into account by defining a β-plane, for which f is calculated by linearizing the Coriolis term
around a constant f0:

f = f0 +βy.

3.4.3 APPLYING AND EXTENDING HYDROSTATIC BALANCE

The hydrostatic balance (equation 1.15) holds for large-scale motions in the atmosphere
and ocean (section 3.4.1). The fluid dynamical equations for large-scale motions in the
atmosphere can therefore be simplified by changing from an (x, y, z) coordinate system to an
(x, y, p) coordinate system (i.e., replacing the vertical coordinate z with pressure p). To derive
the new equations, let ϕ′(x, y, z(x, y, p, t ), t ) =ϕ(x, y, z, t ), so that

∂ϕ

∂x
= ∂ϕ′

∂x
+ ∂ϕ′

∂z

∂ϕ

∂x
∂ϕ

∂y
= ∂ϕ′

∂y
+ ∂ϕ′

∂z

∂ϕ

∂y

∂ϕ

∂t
= ∂ϕ′

∂t
+ ∂ϕ′

∂z

∂ϕ

∂t

and, using the hydrostatic balance,

∂ϕ

∂p
= ∂ϕ′

∂z

∂z

∂p
=− 1

ρg

∂ϕ′

∂z
.

Using the geopotentialΦ= g z (equation 3.27) and the equation of state for the atmosphere
(equation 1.13), the hydrostatic balance can be expressed as

∂Φ

∂p
=− 1

ρ
=−Rd T

p
. (3.38)

Note that the horizontal pressure gradient in pressure coordinates is by definition zero, so that

0 =∇p p =∇z p + ∂p

∂z
∇p z =∇z p −ρg∇p z

17



where the subscripts p and z indicate the vertical coordinate. The horizontal pressure gradient
in z-coordinates is then

1

ρ
∇z p = g∇p z =∇pΦ (3.39)

In other words, there is no pressure gradient force on a constant pressure surface (∇p p = 0),
but there is a gravitational force because the constant pressure surface is not perpendicular to
gravity (i.e., fluid flows ‘downhill’).

Converting the momentum equations to pressure coordinates yields

∂u

∂t
+ (u ·∇p )u +ω∂u

∂p
− f v =−∂Φ

∂x
+Fx (3.40)

∂v

∂t
+ (u ·∇p )v +ω∂v

∂p
+ f u =−∂Φ

∂y
+Fy (3.41)

∂Φ

∂p
=−Rd T

p
=−1ρ (3.42)

where u is the two-dimensional velocity vector along pressure surfaces and ω = d p
d t is the

vertical velocity in pressure coordinates. Equation 3.42 results from the assumption of hy-
drostatic balance (i.e., no acceleration in the vertical direction). Pressure and density are in
hydrostatic balance, so that there are no horizontal variations in density on a pressure surface.
The continuity equation then becomes

∇p ·u+ ∂ω

∂p
= 0. (3.43)

This form of the continuity equation is the same as that for a fluid of constant density. The
thermodynamic equation is given by the first law of thermodynamics (equation 2.2):

Q̇ = cp
dT

d t
− 1

ρ

d p

d t
= cp

(
∂T

∂t
+ (u ·∇p )T +ω∂T

∂p

)
− 1

ρ
ω. (3.44)

Using pressure coordinates simplifies the fluid dynamical equations (particularly the pres-
sure gradient terms and the continuity equation), but complicates the lower boundary con-
ditions. Recall that in (x, y, z) coordinates we generally set w = u · ∇z0, so that there is no
flow into or out of the surface. Unlike z0, the surface pressure p0 changes in both time and
space, so that the lower boundary must be determined from scratch at every time step. These
approximations are therefore mainly useful in the free atmosphere (i.e., the part of the atmo-
sphere unaffected by the surface). Many atmospheric models, particularly those with complex
topography, use the terrain-following vertical coordinate σ= p/p0 in place of p.

We can derive a similar set of equations for the ocean, not by replacing z with p but by
assuming that the density p is constant everywhere but where it is coupled to gravity. This
approximation is useful because variations in density in the ocean are small relative to the
mean density. Setting ρ = ρ0 simplifies the horizontal pressure gradients (which are now solely
determined by variations in the surface height) and yields a modified continuity equation
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∇·v = 0. (3.45)

Note that the form of equation 3.45 is equivalent to the form of the continuity equation for
constant pressure coordinates (equation 3.43).

Even though ρ−ρ0 is small, gravity is large; therefore, variations in density are important
where coupled to gravity (i.e., in the vertical momentum equation). Assume that p = p0 +p ′,
so that

∂p0

∂z
=−g /r ho0

and

∂p ′

∂z
=−g (ρ−ρ0).

Define the buoyancy b as

b ≡−g
ρ−ρ0

ρ0
. (3.46)

Neglecting friction, the vertical momentum equation then becomes

∂w

∂t
+ (v ·∇)w =− 1

ρ0

∂p ′

∂z
+b. (3.47)

This approximation is called the Boussinesq approximation after the mathematician Joseph
Boussinesq. The Boussinesq approximation is particularly useful for studying buoyancy oscil-
lations in the upper ocean. Moreover, this approximation does not depend on the hydrostatic
balance, and can therefore be used to study convection.

3.4.4 GEOSTROPHIC BALANCE AND THE THERMAL WIND

As hinted in section 3.4.1, a geostrophic flow is one for which the horizontal pressure gradient
force and the Coriolis force balance. The approximation of geostrophic balance is fundamental
to much of meteorology and oceanography, particularly in mid-latitudes. Formal derivations
are provided in virtually all textbooks that include ocean or atmosphere dynamics (see, e.g.,
Gill, 1982; Holton, 1992; Vallis, 2006; Marshall and Plumb, 2008).

The evolution of a geostrophic flow proceeds as follows. Suppose that a horizontal pressure
gradient develops in the atmosphere or ocean. This pressure gradient generates an accelera-
tion of the flow that is directed from the high pressure region to the low pressure region. As the
fluid moves along this gradient, it is deflected by the Coriolis force (to the right in the northern
hemisphere, and to the left in the southern hemisphere. In order for the flow to reach a steady
state, the pressure gradient force must be exactly balanced by the Coriolis force. In this case,
the direction of the flow must be perpendicular to both the pressure gradient force and the
Coriolis force. In other words, a geostrophic flow follows contours of constant pressure (iso-
bars), as illustrated in Fig. 3.9. In either hemisphere, the geostrophic flow around low pressure
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Figure 3.9: Schematic diagram of geostrophic flow in the northern hemisphere. Flow is parallel
to lines of constant pressure (isobars), and is oriented counter-clockwise (in the
same sense as Ω) around low pressure systems but clockwise around high pres-
sure systems. In the southern hemisphere, flow is oriented clockwise around low
pressure systems and counter-clockwise around high pressure systems (from Vallis,
2006).

systems is in the same sense as Earth’s rotation, and is said to be cyclonic. Geostrophic flow
around high pressure systems is in the opposite sense, and is said to be anticyclonic.

We can define the geostrophic velocity according to

f ug =− 1

ρ

∂p

∂y
= −∂Φ

∂y

∣∣∣∣
p

(3.48)

− f vg =− 1

ρ

∂p

∂x
= −∂Φ

∂x

∣∣∣∣
p

(3.49)

where the subscript p indicates differentiation on surfaces of constant pressure. This balance
is satisfied in regions where friction is small (i.e., away from boundaries) and where the
horizontal acceleration is small relative to the coriolis term. From a scaling perspective, this
translates into the condition that U/L¿ f0, where U is the characteristic velocity scale, L is
the characteristic length scale, and f0 is the characteristic scale of the Coriolis term f . This
condition is used to define the Rossby number

Ro ≡ U

f0L
(3.50)

such that the geostrophic balance holds for Ro¿ 1.
A sharper pressure gradient can only be balanced by a stronger Coriolis force, so that

the geostrophic wind is stronger for sharper pressure gradients. This can be understood by
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Figure 3.10: Schematic diagram of the thermal wind during northern hemisphere winter. By
hydrostatic balance the vertical pressure gradient is greater where the fluid is
colder and denser. The pressure gradients form as shown, where ’higher’ and
’lower’ mean relative to the mean at that height. The horizontal pressure gradient
forces are balanced by the Coriolis force, which produces westward flow (⊗) at low
altitude and eastward flow (¯) at high altitude (modified from Vallis, 2006).

thinking of the spaces between contours of constant pressure (or geopotential height) as
channels through which a fixed amount of fluid must pass. A narrower channel then requires
a higher velocity to push the fluid through.

If the Coriolis force is constant (such as on an f -plane) and the density does not vary in
the horizontal direction then the geostrophic wind is non-divergent, in the sense that the
horizontal flow does not lead to fluid mass increasing in certain locations (convergence)
while decreasing in others (divergence). However, in the real world friction reduces wind
speeds near the surface. The Coriolis force is dependent on the wind speed, and therefore
no longer exactly balances the pressure gradient force. The winds are therefore directed
slightly toward lower pressures (rather than along isobars, as in the exact geostrophic balance).
Mass therefore converges in low pressure systems and diverges from high pressure systems.
Conservation of mass requires that convergence be balanced by upward motion (which often
leads to condensation of water vapor and precipitation), while divergence must be balanced by
downward motion (which is associated with clear, dry conditions). Accordingly, near-surface
low pressure systems (cyclones) are often accompanied by cloudy skies and precipitation,
while near-surface high pressure systems (anticyclones) are often associated with clear, dry
conditions.

Differentiating the constant pressure form of the geostrophic balance with respect to pres-
sure yields
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f
∂ug

∂p
=− ∂

∂p

∂Φ

∂y
= Rd

p

∂T

∂y
(3.51)

where we have used the hydrostatic equation (in the form of equation 3.38). This relation
is called the thermal wind equation, and indicates that the vertical shear of the geostrophic
wind is a function of the horizontal temperature gradient on constant pressure surfaces. This
relationship is illustrated in Fig, 3.10. The pressure gradient near the surface results in an
acceleration from the higher pressure in the colder midlatitudes to the lower pressure near
the warmer tropics. In geostrophic balance, this results in a westward (easterly) wind near
the surface. The warm, light air in the tropical region expands, resulting in higher pressure
aloft, while the cold, dense air in mid-latitudes contracts, resulting in lower pressure aloft.
This creates a pressure gradient directed from the tropics toward the mid-latitudes, which
in geostrophic balances results in an eastward (westerly) wind aloft. This exact situation is
observed in the subtropics, where the surface winds (the subtropical trade winds) are westward
and the high-altitude winds (the subtropical jet) are eastward.

Horizontal pressure gradients in the ocean, which arise from either variations in the surface
height of the ocean or variations in the distribution of density, can be approximated by calcu-
lating the ocean dynamic height. Hydrostatic balance, which is an excellent approximation for
almost all conditions in the ocean (with the exception of intense convection), can be expressed
as

∂Φ

∂p
=− 1

ρ
=−α

where α = 1/ρ is the specific volume. Oceanographers often work with specific volume
anomalies relative to a reference specific volume at S = 35 ppt (parts per thousand) and
T = 0◦C (i.e., α=α35,0,p +δα). Integrating equation 3.52 yields an expression for the difference
between two geopotential surfaces

Φ1 −Φ2 =
p2∫

p1

αd p.

Now define the ocean dynamic height D as

D =
p2∫

p1

δαd p (3.52)

so that

∇p D =∇pΦ1 −∇pΦ2. (3.53)

If the geopotential surface Φ2 is flat (i.e., ∇pΦ2 = 0), then D describes the pressure gradient
force at level 1. Level 2 is generally defined to be a reference level far enough below the surface
that the flow is weak relative to the surface flow (e.g. 1000 dbar, or ∼1000 m below sea level), in
which case ∇pΦ2 ≈ 0.
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